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The total number of matchings of a graph is defined as its Hosoya index.
Conjugated and non-conjugated acyclic graphs that have maximal Hosoya index and
short diameter are characterized in this paper, explicit expressions of the Hosoya indi-
ces of these extremal graphs are also presented.
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1. Introduction

Hosoya index of a graph G, written as Z(G), is defined as the total number
of its matchings [1], where a matching M of graph G is a set of its edges that
share no common endpoints. If denote by m(G, k) the number of k-matchings,
matching that consists of k edges, of G, then

Z(G) =
�n/2�∑

k=0

m(G, k),

where n is the order of G, the number of its vertices, and �n/2� is the integer
part of n/2. It is convenient to define m(G, 0) = 1 and m(G, k) = 0 when k �
�n/2� + 1.

As a chemical structure descriptor, Hosoya index plays an important role
in the so-called inverse structure–property relationship problems. For details, the
readers are suggested to refer to Gutman and Polansky [2] and Skvortsova et al.
[3] and their references. On the other hand, Hosoya index of an acyclic molecu-
lar graph G has a close relationship with its energy E(G), the sum of the abso-
lute values of all eigenvalues of its adjacency matrix A(G) [4], since E(G) can be
expressed in terms of Coulson integral [2]:

E(G) = 2
π

∫ +∞

0
x−2 ln

⎛

⎝1 +
�n/2�∑

k=1

m(G, k)x2k

⎞

⎠ dx .
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Extremal molecular graphs that have maximal or minimal Hosoya index draw
a lot of attention [5–8]. The authors present an ordering of conjugated acy-
clic graphs according to their maximal energy (or Hosoya indices) in [9]. Extre-
mal unicyclic molecular graphs with minimal Hosoya index and prescribed girth
are characterized in [10], explicit expressions of their Hosoya indices are also
presented there.

Let G be a conjugated n-vertex tree and M be its perfect matching. Then a
k-matching of G consists of two disjoint parts: an i-matching M1 of G − M and
a subset M2 of M such that no edges of M1 and M2 share common endpoints,
and vice versa. If G − M is connected, then for any i-matching of G − M there
are 2i edges in M that cannot be chosen to form together with this i-matching
of G − M a k-matching of G. And so

m(G, k) =
k∑

i=1

m(G − M, i) ×
(

n/2 − 2i

k − i

)
.

If G−M is disconnected, then for any given i-matching of G−M there exist i −1
to 2i edges in M that cannot be chosen to form together with this i-matching a
k-matching of G. Let m j (G−M, i) stand for the number of i-matchings of G−M
that shares common endpoints with exactly j edges of M each. Then

m(G, k) =
k∑

i=0

2i∑

j=i−1

m j (G − M, i) ×
(

n/2 − j

k − j

)
.

From the above two formulas, we conclude that when G has maximal Hosoya
index, under the condition that the size of every component of G − M is given,
each component of G−M should have maximal Hosoya index, and that the end-
points of edges of M that join different components of G − M are 1-degree ver-
tices of the corresponding components. Noting that each component of G − M
has shorter diameter than G, the previous reasoning shows that one can study
structure properties of graphs with maximal Hosoya index by considering those
graphs that have short diameter.

In section two of this paper, we present explicit expressions of maximal
Hosoya indices of trees with diameter four and characterize those trees whose
center has any given degree. A conjecture on the structure property of extremal
n-vertex trees is presented there. Extremal conjugated trees with diameter five are
characterized in section three, the expression of their Hosoya indices are also
presented there.

For graph-theoretical symbols and terminologies not defined here, we follow
that of Ref. [11].
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Figure 1. Two special graphs.

2. Trees of diameter four

Before presenting the main results of this section, let us define a class of
trees at first. For two vertices u and v of a connected graph G, we denote by
d(u, v) the distance between u and v (namely the number of edges of a shortest
path between u and v); write r(u) = Max{d(u, v) : v ∈ V (G)} and call vertex u
a center of graph G if r(u) = Min{r(v) : v ∈ V (G)}, where V (G) is the vertex-
set of G. A classic graph-theoretical result says that a connected graph contains
exactly one center if it has even diameter or two centers otherwise, in the latter
case these two centers are also called bicenters.

Let q, t , m, and n be four nonnegative integers such that q � 1, t � 2, m �
t − 1 and n = qt + m + 1. Let St

n stand for the tree with order n and diameter 4
that is obtained as follows: join every center of m copies of the complete bipar-
tite graph Kq,1 and t − m copies of the complete bipartite graph Kq−1,1 each
by an edge to a new vertex u. Clearly, St

n contains u as its unique center with
degree(valence) d(u) = t . For clarity, this graph is depicted in figure 1 (the other
graph is employed in section 3).

Lemma 2.1. Let G be a tree with order n and diameter 4. If its center has degree
t , then m(G, k) � m(St

n, k) with equality holding for every nonnegative integer k
if and only if G = St

n.

Proof. Let u be the center of G and N (u) = {v1, v2, . . . , vt } be its neighbor-
hood; let d(vi ) = xi + 1 be the degree of vertex vi , i = 1, . . . , t . Assume without
loss of generality that x1 � x2 � · · · � xt . If x1 � xt + 2, after deleting from G a
pendant vertex (1-degree vertex) adjacent to v1 and attaching an edge to vertex
vt , we construct a new graph G ′. When 1 � k � t , the k-matchings of G are
partitioned into two classes: those that saturate the center u and those not. And
so, when 2 � k � t we have

m(G, k) = (t − k + 1)
∑

1�i1<i2<···<ik−1�t

xi1 xi2 xik−1

+
∑

1�i1<i2<···<ik�t

xi1 xi2 xik ,
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where {i1, i2, . . . , ik} ⊂ {1, 2, . . . , t}. When 4 � k � t , we have

m(G ′, k) − m(G, k) = (t − k + 1)(x1 − xt − 1)
∑

1<i1<···<ik−3<t

xi1 xi2 · · · xik−3

+(x1 − xt − 1)
∑

1<i1<···<ik−2<t

xi1 xi2 · · · xik−2 . (1)

When k � 3, we have

m(G ′, k) − m(G, k) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if k = 0 or 1,

x1 − xt − 1, if k = 2,

(x1 − xt − 1)(t − 2 +
t−1∑
i=2

xi ), if k = 3.

(2)

Since x1 � xt + 2, it follows from the combination of Eqs. (1) and (2) that
m(G ′, k) � m(G, k) holds for every nonnegative integer k. The equality in pre-
vious formula holds for every nonnegative integer k if and only if x1 = xt + 1.
The lemma follows from above discussion. �

Lemma 2.2. Let t, n be two nonnegative integers such that n � 5 and 2 � t �
n − 1. Then Z(St

n) = (�(n − 1)/t� + 1)n−2−t�(n−1)/t� × �(n − 1)/t�t−n+t�(n−1)/t� ×
((�(n − 1)/t� + 1)(t + �(n − 1)/t�) − n + 1 + t�(n − 1)/t�).

Proof. Assume k, m be two nonnegative integers such that n − 1 = kt + m, m �
t − 1. Then k = �(n − 1)/t�, m = n − 1 − �(n − 1)/t�.

Case 1 m = 0. Let us label any k − 1 pendant vertices and their com-
mon neighbour with 1, 2, . . . , k − 1 and k, respectively, at first, and then label
any other k − 1 pendant vertices and their common neighbor with k + 1, . . . , 2k,
respectively, etc. Finally, label with n the center of St

n. Write B = (bi j ) for the
neighbor matrix of St

n, where bi j = 1 if and only if either i = j or vertex i is
adjacent to vertex j . Then

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 · · · k − 1 k k + 1 · · · 2k − 1 2k · · · n
1 1 0 0 · · · 0 1 0 · · · 0 0 · · · 0
2 0 1 0 · · · 0 1 0 · · · 0 0 · · · 0
3 0 0 1 · · · 0 1 0 · · · 0 0 · · · 0
...

...
...

...
. . .

...
...

... · · · ...
... · · · ...

k − 1 0 0 0 · · · 1 1 0 · · · 0 0 · · · 0
k 1 1 1 · · · 1 1 0 · · · 0 0 · · · 1
k + 1 0 0 0 · · · 0 0 1 · · · 0 1 · · · 0
...

...
...

... · · · ...
...

... · · · ...
... · · · ...

n 0 0 0 · · · 0 1 0 · · · 0 1 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since St
n is an acyclic graph, a classic result says Z(St

n) = Per(B). Expanding
the permanent Per(B) of matrix B along its first k rows, if denote by B1 the(1,...,k

1,...,k

)
-minor of B, B2 the

(k+1,...,n
k+1,...,n

)
-minor, B3 the

( 1,...,k
1,...,k−1,n

)
-minor, and B4 the(k+1,...,n

k,...,n−1

)
-minor, we have

Per(B) = Per(B1)Per(B2) + Per(B3)Per(B4) (3)

Noting that B1 and B2 is the neighbor matrix of K1,k−1 and St−1
n−k , respectively,

we have Per(B1) = k. On the other hand, the
(1,...,n−k−1

2,...,n−k

)
-minor of B4 is the

neighbor matrix of graph (t −1)K1,k−1, the union of t −1 copies of K1,k−1. Since
the Hosoya index of the union of two vertex-disjoint graphs equals to the prod-
uct of the Hosoya indices of these two graphs, if expanding Per(B4) along its
first column we get

Per(B4) = (Z(K1,k−1))
t−1. (4)

Since Per(B1) = k and B2 is the neighbor matrix of St−1
n−k , it follows from the

combination of (3) and (4) that

Per(B) = k Z(St−1
n−k) + kt−1

= k(k Z(St−2
n−2k) + kt−2) + kk−1

= k2 Z(St−2
n−2k) + 2kt−1

. . .

= kt−1(k + 1) + (t − 1)kt−1 = tkt−1 + kt .

The first part of the lemma follows.
Case 2 m � 1. Label at first the k-degree neighbors of the center and their

pendent neighbors just as in case 1, and then the (k + 1)-degree neighbors of
the center and their pendent neighbors. Finally label the center with n. Expand-
ing the permanent of this neighbor matrix along its first k arrows, we obtain
Per(B) = k Z(St−1

n−k) + (k + 1)mkt−m−1. Expand similarly the permanent of the
neighbor matrix of St−1

n−k if its center has a k-degree neighbor, etc. Finally, we
stop at getting the permanent of the neighbor matrix of Sm

n−(t−m)k . Hence,

Per(B) = k Z(St−1
n−k) + (k + 1)mkt−m−1

= k(k Z(St−2
n−2k) + (k + 1)mkt−m−2) + (k + 1)mkt−m−1

= k2 Z(St−2
n−2k) + 2(k + 1)mkt−m−1

. . .

= kt−m Z(Sm
n−(t−m)k) + (t − m)(k + 1)mkt−m−1

= kt−m(m(k + 1)m−1 + (k + 1)m) + (t − m)(k + 1)mkt−m−1

= (k + 1)m−1kt−m−1((k + 1)(k + t) − m).
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The lemma follows from above formula.

Theorem 2.3 follows directly from the combination of lemmas 2.1 and 2.2,
corollary 2.4 follows from lemma 2.1, and corollary 2.5 follows from theorem 2.3.

Theorem 2.3. Let t and n be two nonnegative integers such that n � 5 and 2 �
t � n − 1. Let G be an n-vertex tree of diameter 4 with center having degree t .
Then Z(G) � (�(n − 1)/t� + 1)n−2−t�(n−1)/t� × �(n − 1)/t�t−n+t�(n−1)/t� × ((�(n −
1)/t� + 1)(t + �(n − 1)/t�) − n + 1 + t�(n − 1)/t�). The equality holds if and only
if G = St

n.

Corollary 2.4. Let G be an n-vertex tree of diameter 4 and vertex u be its center.
If n � 5 and d(u) = t � 2, then E(G) � E(St

n) with the equality holding if and
only if G = St

n.

Corollary 2.5. If n � 5, then the maxmal Hosoya index of n-vertex trees of diam-
eter 4 is Max {Z(St

n) : 2 � t � n − 1}.

Remark 1. Employing MATLAB 6.5 we determine, according to the formulas
listed in lemma 2.2 and corollary 2.5, some trees of diameter 4 that have max-
imal Hosoya indices. A very interesting phenomenon is also found. We employ
the following MATLAB program to calculate the maximal Hosoya index of trees
of order n and the degree x of their centers. At first for any given integer n � 5
we input the following program in the command window:

>> clear

>> fun = ’ − ((fix((n − 1)/x) + 1)(n − 2 − x∗(fix((n − 1)/x)))∗(fix((n − 1)/x))

+(x − n)x∗(fix((n − 1)/x)))∗((fix((n − 1)/x) + 1)∗(x + fix((n − 1)/x)) − n + 1

+x∗fix((n − 1)/x)))’,

>> [X,fval] = fminbnd(fun, 2, n − 1).

After running this program we obtain the value of x . And then, for above given
n we substitute �x� and �x� + 1, respectively, for x in the following program to
get the values of ‘-fval’. The greater value of these two ‘-fval’s is the maximal
Hosoya index, and its corresponding value of �x� or �x�+1 is the degree of the
center.

>> (fix((n − 1)/x) + 1) ˆ (n − 2 − x∗(fix((n − 1)/x)))∗(fix((n − 1)/x))(x − n + x∗

(fix((n − 1)/x)))∗((fix((n − 1)/x) + 1)∗(x + fix((n − 1)/x)) − n + 1 + x∗fix((n − 1)/x)).
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Table 1
Degree of the center of Sx

n that has maximal Hosoya index.

n x n x n x n x n x n x n x

5 2 19 9 33 14 47 16,17 61 20 75 25 497 166
6 3 20 9 34 14 48 17 62 21 76 25 498 166
7 3 21 10 35 14 49 17 63 21 77 26 499 166
8 3,4 22 10 36 14 50 17 64 21 78 26 500 167
9 4 23 11 37 14,15 51 17 65 22 79 26 899 300

10 4 24 11 38 15 52 17,18 66 22 89 30 900 300
11 5 25 12 39 15 53 18 67 22 90 30 901 300
12 5 26 12 40 15 54 18 68 23 91 30 1499 500
13 6 27 12,13 41 15 55 18 69 23 119 40 1500 500
14 6 28 13 42 15,16 56 19 70 23 120 40 1501 500
15 7 29 13 43 16 57 19 71 24 121 40
16 7 30 13 44 16 58 19 72 24 229 100
17 8 31 13 45 16 59 20 73 24 300 100
18 8 32 13,14 46 16 60 20 74 25 301 100

Table 1 lists some degrees of the centers of n-vertex trees of diameter 4 that
have maximal Hosoya index. All these values of x are obtained by above two
programs.

Table 1 shows that when n = 8, 27, 32, 42, 47, 52 there exist two non-
isomorphic n-vertex trees G and H of diameter 4 that are not m-comparable,
namely there exist two distinct positive integers k1 and k2 such that m(G, k1) >

m(H, k1) and m(G, k2) < m(H, k2). But they have same maximal Hosoya indices.
Its seems by table 1 that if n � 53 and n − 1 = 3k − s, s = 0, 1, 2, then Sk

n is
the unique n-vertex trees of diameter 4 that has maximal Hosoya indices. And
so we put forward the following conjucture.

Conjecture. Let n be a positive integer such that n−1 = 3k−s, s=0,1,2. If n � 53,
then Sk

n is the unique n-vertex tree of diameter 4 that has maximal Hosoya index.

Remark 2. An anonunous referee puts forward an interesting problem as fol-
lows: to characterize acyclic graphs with maximal Hosoya index, graphs with
how short diameter need we determine at first? Or conversely, if acyclic graphs
with diameter no more than s are all characterized, the structure properties of
acyclic graphs with diameter at least how long can be determined?

3. Conjugated trees of diameter 5 or less

Note that no trees of diameter 2 contain a perfect matching, and that other
conjugated trees with diameter d � 4 are uniquely determined by their order:
they are isolated edge when d = 1; 4-vertex path P4 when d = 3 and B�

m when
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d = 4 [4], where B�
m is obtained by attaching an edge to every vertex of the

star K1,m . In this section, we characterize extremal conjugated trees of diame-
ter 5 that have maximal energies and present explicit expressions of their Hosoya
indices. Let us denote by Hm,n the tree obtained by joining at first with an edge
the centers of stars K1,m and K1,n and then attaching an edge to every 1-degree
vertex of the resulting graph, refer to figure 1 for clarity.

Lemma 3.1. Let G be a conjugated tree of order n and diameter 5. Then
m(G, k) � m(Hm,m, k) when n = 4m + 2 and m(G, k) � m(Hm,m−1, k) when
n = 4m, with the equality holding if and only if G is isomorphic to the corre-
sponding graph.

Proof. Let M(G) be the unique perfect matching of graph G. When n = 4m+2,
since G has diameter 5, the subgraph G ′ that is induced by the edges of G −
M(G) contains at most two components, none of which contains 2-matching (or
equivalently each of the two components is a star) when there exists two compo-
nents. Since G ′ contains precisely 2m edges, it follows that m(G ′, 2) � m2, with
the equality holding if and only if G ′ consists of two stars K1,m .

Recall that every k-matching of G is formed by an i-matching S1 of G ′ and
a (k − i)-order subset S2 of M(G) such that no edges of S1 and S2 share a com-
mon endpoint. Since the perfect matching M(G) must cover every vertex of G ′,
every 1-matching of G ′ is adjacent to two edges of M(G) and every 2-matching
is adjacent to at least three edges of M(G). Furthermore, every 2-matching of G
is adjacent to three edges of M(G) if and only if G ′ consists of two stars. Denote
by s3 and s4, respectively, the number of 2-matchings of G ′ that is adjacent to
three and four edges each. Then

m(G, k) = m(G ′, 0)

(
2m + 1

k

)
+ m(G ′, 1)

(
2m − 1
k − 1

)

+s1

(
2k − 2
k − 2

)
+ s2

(
2k − 3
k − 2

)

�
(

2m + 1
k

)
+ 2m

(
2m − 1
k − 1

)
+ (s1 + s2)

(
2k − 2
k − 2

)

�
(

2m + 1
k

)
+ 2m

(
2m − 1
k − 1

)
+ m2

(
2k − 2
k − 2

)

= m(Hm,m, k). (5)

As is pointed out before, the first inequality becomes equality if and only if G ′
consists of two stars, and the equality in the second inequality holds if and only
if these two star are both isomorphic to K1,m . The first part of lemma 3.1 fol-
lows, and the second one also follows similarly.
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Lemma 3.2. For every positive integer m, Z(Hm,m) = 22m−2(m2 + 4m + 8) and
Z(Hm,m−1) = 22m−3(m2 + 3m + 6).

Proof. Notice that Hm,m has a unique perfect matching M with size 2m + 1.
Every k-matching of Hm,m consists of an i-matching M1 of Hm,m −M and a sub-
set M2 of order k−i of M such that no edges of M1 is incident with any edges of
M2. Conversely, any two such edge-sets form a k-matching of Hm,m . Since every
1-matching of Hm,m − M is incident with two edges of M and every 2-matching
is incident with three edges in total of M , it follows that

m(Hm,m, k) =
(

2m + 1
k

)
+

(
2m

1

)(
2m − 1
k − 1

)
+

(
m

1

)(
m

1

)(
2m − 2
k − 2

)
.

And so

Z(Hm,m) =
2m+1∑

k=0

m(Hm,m, k)

=
2m+1∑

k=0

(
2m + 1

k

)
+

2m−1∑

k=1

2m

(
2m − 1
k − 1

)
+

2m−2∑

k=2

m2
(

2m − 2
k − 2

)

= 22m−2(m2 + 4m + 8).

The first part of lemma 3.2 follows and the second one can be shown with a sim-
ilar technique.

The following theorem follows directly from the combination of lemma 3.1
and 3.2; corollary 3.4 follows directly from lemma 3.1 and the expression of
E(G) (in terms of Coulson integral).

Theorem 3.3. Let G be a conjugated tree with order n and diameter 5. Then
Z(G) � 22m−2(m2 + 4m + 8) when n = 4m + 2, with the equality holding if
and only if G = Hm,m ; Z(G) � 22m−3(m2 + 3m + 6) when n = 4m, with the
equality holding if and only if G = Hm,m−1.

Corollary 3.4. Let G be a conjugated tree with order n and diameter 5. Then
E(G) � E(Hm,m) when n = 4m + 2, with the equality holding if and only if
G = Hm,m ; E(G) � E(Hm,m−1) when n = 4m, with the equality holding if and
only if G = Hm,m−1.
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